skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kojovic, Aleksandar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyvinylidene fluoride (PVDF) is a novel gel polymer electrolyte alternative which can reduce the risk of irreversible failure in lithium-ion batteries (LIB) [1]. PVDF matrix structures which exhibit inter-crosslinking networks have previously demonstrated favorable thermal and mechanical properties for LIB applications [2]. PVDF based multifunctional material is attracting a great scientific interest due to its excellent piezoelectric, pyroelectric and ferroelectric properties. Such as, its properties strongly depend on synthesis procedures and obtained microstructures. In this research, porous structure and cross-linking patterns of PVDF were prepared by electrospinning method and it has been found that these microstructures can have fractal structure. Fractal analysis can be used as a powerful tool for describing structural and functional properties of these this material. Because of that, in this research we have used different fractal methods for the reconstructions of various PVDF microstructure morphologies. Fractal analysis has been performed by using scanning electron microscope micrographs and computational modeling tools. Theory of Iterated Function Systems and Voronoi tessellation, have been used for modeling PVDF porous structures. A Python algorithm was created to determine the distribution of pore areas in SEM micrographs. Algorithm?s distribution of calculated pore surface areas were compared with measured pore surface areas and fractal reconstructions of different morphologies and their connection with functional properties were analyzed. 
    more » « less